芯片制造商使用我们的产品来解决芯片打印以及通过数据反馈循环检查,使它们能够提高精度和产量。

Types of metrology and inspection


有两种方法可以检查芯片上的印刷功能的质量:基于衍射的光学测量和电子束检查。


衍射examines how light reflects from the wafer, while e-beam observes how electrons scatter when they come into contact with the wafer.

ASML使用两者:产量系统使用基于衍射的测量来测量晶圆上的图案质量,HMI电子束检测系统有助于找到和分析单个芯片缺陷。结合来自光刻机器内的传感器的信息,EarceStar和HMI系统提供了一系列芯片制造商用于优化其制造过程的数据。

衍射-based optical metrology

产量


ASML's YieldStar systems do just what their name suggests: They help our customers to increase their yield, or the proportion of chips on the wafer that perform properly. YieldStar allows manufacturers to track key production parameters such as overlay (the accuracy with which two layers of a chip are aligned). YieldStar systems are usually integrated into the production line so that they can measure quickly and accurately, looping the data back to the lithography system for real-time corrections to the manufacturing process.

Easstar,ASML的旗舰光学计量系统集成在光刻电池中。

怎么运行的


衍射

衍射-based metrology is based on the simple fact that an object’s shape determines how light reflects from it. For example, shine a beam of light onto a repeating pattern of lines on a wafer, and you can easily predict what the resulting pattern of scattered light should look like. If you collect the scattered light using a high-resolution digital camera, you can quickly determine how well the prediction matches reality and thus how well the pattern of lines has been printed.


Fast, accurate wafer metrology

In wafer metrology, key manufacturing parameters such as overlay (the accuracy with which two layers of a chip are aligned) and focus (how sharp the image is) are monitored by measuring how well a particular repeating pattern (the ‘metrology target’) is printed on the wafer. These measurements are made at marked locations across the wafer.


集成到生产线中

Prior to YieldStar, wafers were taken out of the production line to be measured manually. By integrating our solution into the production line (or ‘track’), chipmakers can now use YieldStar to gather their metrology data quickly and accurately, offering better control over their production processes. Metrology data is analyzed in control software and fed back to the lithography system in real-time, which enables customers to tune the manufacturing process further for optimal yield.


From repeating patterns to real structures

Our latest developments in diffraction-based metrology feature new optics technology to generate even more accurate data faster, measuring thousands of data points for each batch of wafers. YieldStar matches the productivity of our lithography systems for wafer-to-wafer control on the most advanced chip nodes. Additionally, YieldStar is being used for after-etch metrology to inspect actual device structures with more accuracy and higher measuring speed than our competitors’ scanning electron microscope (SEM) solutions.

电子束检验



对于当今的先进微芯片,小于几个纳米的缺陷可能足以使整个芯片无用。凭借其1纳米的分辨率,电子束检验提供了正确的眼睛,以发现那些微小的错误印刷。


ASML is at the forefront of developments in e-beam metrology and inspection. E-beam boasts a higher resolution than YieldStar, but it measures more slowly, which means that it’s typically used after the pattern has been etched into the wafer.

An ASML HMI eP5 e-beam inspection system.

怎么运行的


'e'是'电子'

E-beam technology has been around for decades. The basic concept is that a metal wire is heated until it gives off electrons, which are accelerated and formed into a beam by electric and magnetic fields. Unlike visible and ultraviolet light (but just like extreme ultraviolet light) electron beams have to travel in a vacuum so they are not deflected or absorbed before reaching the target.


在半导体工业中的计量和检查中,电子束穿过晶片。电子撞击表面并渗透到材料中,在散射之前产生新的“二次电子”。与基于衍射的测量一样,测量二次电子的散射允许我们构建表面的非常高分辨率的表面。光束越聚焦,可以测量的细节越小。


加快电子束成像

具有电子束测量的棘手的事情是它们非常慢。结果,它们通常仅在芯片制造的早期研发等中使用,其中时间较少。


ASML在加快电子束测量方面是一种方式,以便制造商可以在批量生产中享受他们的好处。我们这样做的一种方式是开发对焦于对缺陷更可能或更重要的特定热点的电子束测量的解决方案。


多滨检验

我们最近的电子束系统,HMI ESCAN 1000,将高分辨率电子束测量与最先进的计算建模,机器学习算法和来自光刻系统的数据相结合。


HMI ESCAN 1000使用多个电子束以更快地检查晶片的更大的表面积。首先将客户于2020年5月运送到客户,ESCAN 1000是3x3多波束系统,可以提高吞吐量大约九个。但我们不打算停止那里 - 我们计划增加后代的光束和光束分辨率,以与芯片制造商的产品路线图要求对齐。


在线晶圆和掩盖检查

通过加速过程并缩小搜索到特定区域,可以直接在生产线中使用电子束,以进行晶片检查,同时保持生产力水平。

二进制代码有蓝色背景。

大数据



Each of our lithography machines is fitted with hundreds of sensors – some 1,500 in our latest EUV systems. These monitor everything that happens inside the system: from mapping the wafer’s surface and temperature to verifying the reticle’s positioning and checking for local heating in the lens. A single lithography system can generate up 31 terabytes of data per week from these sensors – that’s three times more than the Hubble Space Telescope gathers in a year.

阅读更多


快速反馈循环

数据仅适用于它。这就是为什么我们的光刻系统有数以千计的致动器,可以在晶片和掩模版阶段,透镜系统和照明器中微小地调整关键元件。这些允许根据需要确保系统设置。


光刻系统内的数据和执行器之间的链接是自动的。除此之外,我们开发了强大的软件工具,可以分析来自光学计量和电子光束检查的数据,以识别制造过程中的变化。通过这种知识,我们计算光刻系统的最佳设置,以确保制造过程产生最佳结果。

模式保真



模式保真control (PFC) is a new paradigm in chip manufacturing, aiming to deliver the full benefits of our holistic lithography approach. By drawing and analyzing the most precise data from a wider range of sources throughout the entire chip development and manufacturing process, it gives chipmakers unprecedented insight into the patterns they are actually printing on wafers. Power algorithms then translate that insight into actions that can be implemented in the lithography system to prevent pattern defects and enable high yields even when producing the most complex chips.

阅读更多


提供数据

PFC的愿景是从Microchip开发和生产过程中尽可能地绘制相关数据。为此,我们与工厂中的其他半导体设备制造商合作,为芯片制造商带来最大的利益。我们当然使用典型的数据来源,例如Earystar Metrology Systems,电子束检测工具和光刻系统内的晶片映射。但我们还利用了我们计算光刻解决方案的信息以及生产线中的非ASML设备。最后,我们正在开发一系列模式保真度计量选项,其利用可集成到生产线的方式利用电子束测量的高分辨率。


Data analysis

使用域专家在特定的能力领域,如覆盖性能或照明配置,首先手动预处理到删除虚假关系(域专家看到相关性而且知道没有因果关系)。然后,通过先进的计算机模型和机器学习算法分析数据以发现有助于缺陷的许多因素之间的相互作用,影响完成的微芯片的性能。我们最终计算在光刻中应用的合适校正。这将提供制造商需要SUB 10 NM功能的高级控制。

更多关于Amanbext手机官网SML技术万博manbetx官网登录